- theory of semigroups
- мат.теория полугрупп
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Special classes of semigroups — In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists… … Wikipedia
Krohn–Rhodes theory — In mathematics and computer science, Krohn Rhodes theory is an approach to the study of finite semigroups and automata that seeks to decompose them in terms of elementary components. These turn out to correspond to finite aperiodic semigroups and … Wikipedia
Model theory — This article is about the mathematical discipline. For the informal notion in other parts of mathematics and science, see Mathematical model. In mathematics, model theory is the study of (classes of) mathematical structures (e.g. groups, fields,… … Wikipedia
Recursion theory — Recursion theory, also called computability theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown to include the study of generalized computability… … Wikipedia
Computability theory — For the concept of computability, see Computability. Computability theory, also called recursion theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown … Wikipedia
History of group theory — The history of group theory, a mathematical domain studying groups in their various forms, has evolved in various parallel threads. There are three historical roots of group theory: the theory of algebraic equations, number theory and geometry.… … Wikipedia
Ideal (order theory) — In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different… … Wikipedia
Abstract analytic number theory — is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the… … Wikipedia
Semigroup — This article is about the algebraic structure. For applications to differential equations, see C0 semigroup. In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup… … Wikipedia
Inverse semigroup — In mathematics, an inverse semigroup S is a semigroup in which every element x in S has a unique inverse y in S in the sense that x = xyx and y = yxy. Inverse semigroups appear in a range of contexts; for example, they can be employed in the… … Wikipedia
Semigroup action — In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using… … Wikipedia